Small Flow Gas Coalescing Assembly

Description
Small Flow Gas (SFG) Coalescing Assemblies are rugged, inexpensive, high efficiency assemblies that eliminate problems caused by oil, water, and dirt in air or gas.

Performance Specifications
- Removal of 99.99% of all aerosols 0.3 microns and larger. Typical downstream aerosol concentrations are less than 0.003 ppm.
- Patented surface treatment that prevents liquids from wetting the coalescer media allowing for higher gas flow capacity and lowered fouling tendency and differential pressure.
- Consistent performance using thin fibers and fixed pore construction optimized for efficient coalescing.
- Long service life due to pleated media structure and surface treatment.
- Low energy losses with typical saturated pressure drop of 1.2 psid (82.7 mbard).
- Wide range of compatibility for use with process gases, compressor oils, hydrocarbon condensates, and water.

SFG Coalescer Features
- Positive Seal: Standard seal material is Nitrile (H13) available as either an internal o-ring or flat gasket depending on coalescer size.
- Outer Drainage Layer: Drainage of coalesced liquid and protection from re-entrainment is provided by a polymeric outer drainage layer. This ensures consistent, high efficiency performance.
- Metal Support Core: Axial strength and protection against liquid slugs are provided by a perforated inner support core constructed of 304 stainless steel.
- Outer Cage: Media support during operation is provided by a 304 stainless steel outer support cage.
- Primary Coalescer: Coalescing is achieved by use of a high area pleated glass fiber medium that is surrounded by a non-woven polymeric support and drainage layers. A patented surface treatment is used that enhances coalescer performance and lowers fouling tendency and pressure drop.
- End Caps: 304 stainless steel end caps are used to improve cartridge strength and prevent contaminant bypass.
Key Benefits

- Protects process analyzers
- Safeguards instrument air operated equipment and systems
- Prevents orifice plugging in pneumatic controllers
- Improves accuracy of gas measurements in the field or plant
- Decreases freeze-out and corrosion problems
- Reduces fouling in small gas-driven engines
- Provides reproducible high-quality gas for all operations using produced gas

SFG Coalescer Element Specifications

<table>
<thead>
<tr>
<th>Coalescer Part Number</th>
<th>PFS4463ZMH13</th>
<th>PFS1001ZMH13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalescing Efficiency at 0.3 µm</td>
<td>99.99%</td>
<td>99.99%</td>
</tr>
<tr>
<td>Rated Flow Air @ 100 psig (6.9 bard) and 100°F (38°C)</td>
<td>60 scfm (8.3 acfm)</td>
<td>200 scfm (27.6 acfm)</td>
</tr>
<tr>
<td>Effective Coalescer Area</td>
<td>0.84 ft² (0.078 m²)</td>
<td>2.2 ft² (0.204 m²)</td>
</tr>
<tr>
<td>Clean Saturated Pressure Drop</td>
<td>0.53 psid (36.54 mbard)</td>
<td>1.5 psid (103.4 mbard)</td>
</tr>
<tr>
<td>Maximum Temperature (water present)</td>
<td>140°F (60°C)</td>
<td>140°F (60°C)</td>
</tr>
<tr>
<td>Maximum Temperature (no water)</td>
<td>250°F (121°C)</td>
<td>250°F (121°C)</td>
</tr>
<tr>
<td>Maximum Differential Pressure¹</td>
<td>50 psid (3.4 bard)</td>
<td>50 psid (3.4 bard)</td>
</tr>
<tr>
<td>Dimensions:</td>
<td>2¾ in O.D. x 5¼ in (57.2 mm O.D. x 133.4 mm)</td>
<td>2¾ in O.D. x 9¾ in (69.9 mm O.D. x 247.7 mm)</td>
</tr>
<tr>
<td>Sealing Mechanism</td>
<td>Single open-ended with internal o-ring</td>
<td>Double open-ended with gaskets / tie rod</td>
</tr>
</tbody>
</table>

¹ Standard seal material is Nitrile (H13). Fluorocarbon Elastomer (H) and Ethylene Propylene (J) are also available for optimum fluid compatibility.

² A change out differential pressure of 15 psid is recommended to ensure efficient operation.

SFG Coalescer Housing Specifications

<table>
<thead>
<tr>
<th>SFG Housing Part Number</th>
<th>Housing Material of Construction</th>
<th>Replacement Cartridge</th>
<th>Design Pressure (psi/bar)</th>
<th>Number of Cartridges</th>
<th>Weight (lb/kg) Dry</th>
<th>Weight (lb/kg) Wet</th>
<th>Connection & Drain Sizes (NPT) (in/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS4463GN80MFH13</td>
<td>316 SS</td>
<td>PFS4463ZMH13</td>
<td>150/10.3</td>
<td>1</td>
<td>3.6/1.7</td>
<td>5.7/2.6</td>
<td>0.5/12.7</td>
</tr>
<tr>
<td>MDS4463G3455</td>
<td>316 SS</td>
<td>PFS4463ZMH13</td>
<td>400/27.6</td>
<td>1</td>
<td>15.0/6.8</td>
<td>22.0/10.0</td>
<td>0.5/12.7</td>
</tr>
<tr>
<td>CCL4001G160H13</td>
<td>316 SS</td>
<td>PFS1001ZMH13</td>
<td>400/27.6</td>
<td>1</td>
<td>7.0/3.2</td>
<td>13.0/5.9</td>
<td>1.0/25.4</td>
</tr>
<tr>
<td>MEN9001G240H</td>
<td>Nickel Plated Carbon Steel</td>
<td>PFS1001ZMH13</td>
<td>4000/275.8</td>
<td>1</td>
<td>26.0/11.8</td>
<td>32.0/14.5</td>
<td>1.5/38.1</td>
</tr>
</tbody>
</table>
To calculate the pressure drop for other process conditions use the following equation:

\[\Delta P = K_H Q_A \rho + K_C Q_A \mu \]

where:
- \(\Delta P \): pressure drop in psid
- \(K_H \): housing pressure drop constant
- \(Q_A \): actual flow rate in acfm
- \(\rho \): gas density at operating conditions in lb/ft³
- \(K_C \): coalescer pressure drop constant
- \(\mu \): gas viscosity at operating conditions in cP

Pall Corporation

A Powerful Resource For Control Protection and Teamwork

Pall Corporation brings 60 years of filtration and separations experience to your plant’s processes. With the industry’s widest range of advanced products, Pall can design a system specifically for your plant, based on a thorough evaluation of your needs.

You’ll receive technical consultation and support from our Scientific and Laboratory Services Department (SLS). SLS represents a large global network of scientists and engineers spanning more than 30 Pall laboratories worldwide.

Pall continues to develop new products and methods to advance the state of the art of phase separation. No other company offers such a strong core competency in coalescing technology to help you reduce operating and maintenance costs through improved product control, plant protection and teamwork.

For more information, contact your local Pall distributor. Additional information on Pall products and services can be found at our web site: http://www.pall.com.
Because of developments in technology the data or procedures may be subject to change. Consequently we advise users to review their continuing validity annually.

Pall Corporation has offices and plants throughout the world in locations including: Argentina, Australia, Austria, Belgium, Brazil, Canada, China, France, Germany, India, Indonesia, Ireland, Italy, Japan, Korea, Malaysia, Mexico, the Netherlands, New Zealand, Norway, Poland, Puerto Rico, Russia, Singapore, South Africa, Spain, Sweden, Switzerland, Taiwan, Thailand, United Kingdom, United States, and Venezuela. Distributors are located in all major industrial areas of the world.